3.536 \(\int \frac {(a+b x^2)^{3/2} (A+B x^2)}{x^{10}} \, dx\)

Optimal. Leaf size=84 \[ -\frac {2 b \left (a+b x^2\right )^{5/2} (4 A b-9 a B)}{315 a^3 x^5}+\frac {\left (a+b x^2\right )^{5/2} (4 A b-9 a B)}{63 a^2 x^7}-\frac {A \left (a+b x^2\right )^{5/2}}{9 a x^9} \]

[Out]

-1/9*A*(b*x^2+a)^(5/2)/a/x^9+1/63*(4*A*b-9*B*a)*(b*x^2+a)^(5/2)/a^2/x^7-2/315*b*(4*A*b-9*B*a)*(b*x^2+a)^(5/2)/
a^3/x^5

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {453, 271, 264} \[ -\frac {2 b \left (a+b x^2\right )^{5/2} (4 A b-9 a B)}{315 a^3 x^5}+\frac {\left (a+b x^2\right )^{5/2} (4 A b-9 a B)}{63 a^2 x^7}-\frac {A \left (a+b x^2\right )^{5/2}}{9 a x^9} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^(3/2)*(A + B*x^2))/x^10,x]

[Out]

-(A*(a + b*x^2)^(5/2))/(9*a*x^9) + ((4*A*b - 9*a*B)*(a + b*x^2)^(5/2))/(63*a^2*x^7) - (2*b*(4*A*b - 9*a*B)*(a
+ b*x^2)^(5/2))/(315*a^3*x^5)

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{x^{10}} \, dx &=-\frac {A \left (a+b x^2\right )^{5/2}}{9 a x^9}-\frac {(4 A b-9 a B) \int \frac {\left (a+b x^2\right )^{3/2}}{x^8} \, dx}{9 a}\\ &=-\frac {A \left (a+b x^2\right )^{5/2}}{9 a x^9}+\frac {(4 A b-9 a B) \left (a+b x^2\right )^{5/2}}{63 a^2 x^7}+\frac {(2 b (4 A b-9 a B)) \int \frac {\left (a+b x^2\right )^{3/2}}{x^6} \, dx}{63 a^2}\\ &=-\frac {A \left (a+b x^2\right )^{5/2}}{9 a x^9}+\frac {(4 A b-9 a B) \left (a+b x^2\right )^{5/2}}{63 a^2 x^7}-\frac {2 b (4 A b-9 a B) \left (a+b x^2\right )^{5/2}}{315 a^3 x^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 63, normalized size = 0.75 \[ \frac {\left (a+b x^2\right )^{5/2} \left (-5 a^2 \left (7 A+9 B x^2\right )+2 a b x^2 \left (10 A+9 B x^2\right )-8 A b^2 x^4\right )}{315 a^3 x^9} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^(3/2)*(A + B*x^2))/x^10,x]

[Out]

((a + b*x^2)^(5/2)*(-8*A*b^2*x^4 - 5*a^2*(7*A + 9*B*x^2) + 2*a*b*x^2*(10*A + 9*B*x^2)))/(315*a^3*x^9)

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 105, normalized size = 1.25 \[ \frac {{\left (2 \, {\left (9 \, B a b^{3} - 4 \, A b^{4}\right )} x^{8} - {\left (9 \, B a^{2} b^{2} - 4 \, A a b^{3}\right )} x^{6} - 35 \, A a^{4} - 3 \, {\left (24 \, B a^{3} b + A a^{2} b^{2}\right )} x^{4} - 5 \, {\left (9 \, B a^{4} + 10 \, A a^{3} b\right )} x^{2}\right )} \sqrt {b x^{2} + a}}{315 \, a^{3} x^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^10,x, algorithm="fricas")

[Out]

1/315*(2*(9*B*a*b^3 - 4*A*b^4)*x^8 - (9*B*a^2*b^2 - 4*A*a*b^3)*x^6 - 35*A*a^4 - 3*(24*B*a^3*b + A*a^2*b^2)*x^4
 - 5*(9*B*a^4 + 10*A*a^3*b)*x^2)*sqrt(b*x^2 + a)/(a^3*x^9)

________________________________________________________________________________________

giac [B]  time = 0.49, size = 400, normalized size = 4.76 \[ \frac {4 \, {\left (315 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{14} B b^{\frac {7}{2}} - 315 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{12} B a b^{\frac {7}{2}} + 840 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{12} A b^{\frac {9}{2}} + 315 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{10} B a^{2} b^{\frac {7}{2}} + 1260 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{10} A a b^{\frac {9}{2}} - 819 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{8} B a^{3} b^{\frac {7}{2}} + 1764 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{8} A a^{2} b^{\frac {9}{2}} + 441 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{6} B a^{4} b^{\frac {7}{2}} + 504 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{6} A a^{3} b^{\frac {9}{2}} - 9 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} B a^{5} b^{\frac {7}{2}} + 144 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} A a^{4} b^{\frac {9}{2}} + 81 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} B a^{6} b^{\frac {7}{2}} - 36 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} A a^{5} b^{\frac {9}{2}} - 9 \, B a^{7} b^{\frac {7}{2}} + 4 \, A a^{6} b^{\frac {9}{2}}\right )}}{315 \, {\left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} - a\right )}^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^10,x, algorithm="giac")

[Out]

4/315*(315*(sqrt(b)*x - sqrt(b*x^2 + a))^14*B*b^(7/2) - 315*(sqrt(b)*x - sqrt(b*x^2 + a))^12*B*a*b^(7/2) + 840
*(sqrt(b)*x - sqrt(b*x^2 + a))^12*A*b^(9/2) + 315*(sqrt(b)*x - sqrt(b*x^2 + a))^10*B*a^2*b^(7/2) + 1260*(sqrt(
b)*x - sqrt(b*x^2 + a))^10*A*a*b^(9/2) - 819*(sqrt(b)*x - sqrt(b*x^2 + a))^8*B*a^3*b^(7/2) + 1764*(sqrt(b)*x -
 sqrt(b*x^2 + a))^8*A*a^2*b^(9/2) + 441*(sqrt(b)*x - sqrt(b*x^2 + a))^6*B*a^4*b^(7/2) + 504*(sqrt(b)*x - sqrt(
b*x^2 + a))^6*A*a^3*b^(9/2) - 9*(sqrt(b)*x - sqrt(b*x^2 + a))^4*B*a^5*b^(7/2) + 144*(sqrt(b)*x - sqrt(b*x^2 +
a))^4*A*a^4*b^(9/2) + 81*(sqrt(b)*x - sqrt(b*x^2 + a))^2*B*a^6*b^(7/2) - 36*(sqrt(b)*x - sqrt(b*x^2 + a))^2*A*
a^5*b^(9/2) - 9*B*a^7*b^(7/2) + 4*A*a^6*b^(9/2))/((sqrt(b)*x - sqrt(b*x^2 + a))^2 - a)^9

________________________________________________________________________________________

maple [A]  time = 0.01, size = 59, normalized size = 0.70 \[ -\frac {\left (b \,x^{2}+a \right )^{\frac {5}{2}} \left (8 A \,b^{2} x^{4}-18 B a b \,x^{4}-20 A a b \,x^{2}+45 B \,a^{2} x^{2}+35 a^{2} A \right )}{315 a^{3} x^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)*(B*x^2+A)/x^10,x)

[Out]

-1/315*(b*x^2+a)^(5/2)*(8*A*b^2*x^4-18*B*a*b*x^4-20*A*a*b*x^2+45*B*a^2*x^2+35*A*a^2)/x^9/a^3

________________________________________________________________________________________

maxima [A]  time = 1.22, size = 96, normalized size = 1.14 \[ \frac {2 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} B b}{35 \, a^{2} x^{5}} - \frac {8 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} A b^{2}}{315 \, a^{3} x^{5}} - \frac {{\left (b x^{2} + a\right )}^{\frac {5}{2}} B}{7 \, a x^{7}} + \frac {4 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} A b}{63 \, a^{2} x^{7}} - \frac {{\left (b x^{2} + a\right )}^{\frac {5}{2}} A}{9 \, a x^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^10,x, algorithm="maxima")

[Out]

2/35*(b*x^2 + a)^(5/2)*B*b/(a^2*x^5) - 8/315*(b*x^2 + a)^(5/2)*A*b^2/(a^3*x^5) - 1/7*(b*x^2 + a)^(5/2)*B/(a*x^
7) + 4/63*(b*x^2 + a)^(5/2)*A*b/(a^2*x^7) - 1/9*(b*x^2 + a)^(5/2)*A/(a*x^9)

________________________________________________________________________________________

mupad [B]  time = 2.13, size = 170, normalized size = 2.02 \[ \frac {4\,A\,b^3\,\sqrt {b\,x^2+a}}{315\,a^2\,x^3}-\frac {10\,A\,b\,\sqrt {b\,x^2+a}}{63\,x^7}-\frac {B\,a\,\sqrt {b\,x^2+a}}{7\,x^7}-\frac {8\,B\,b\,\sqrt {b\,x^2+a}}{35\,x^5}-\frac {A\,b^2\,\sqrt {b\,x^2+a}}{105\,a\,x^5}-\frac {A\,a\,\sqrt {b\,x^2+a}}{9\,x^9}-\frac {8\,A\,b^4\,\sqrt {b\,x^2+a}}{315\,a^3\,x}-\frac {B\,b^2\,\sqrt {b\,x^2+a}}{35\,a\,x^3}+\frac {2\,B\,b^3\,\sqrt {b\,x^2+a}}{35\,a^2\,x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x^2)*(a + b*x^2)^(3/2))/x^10,x)

[Out]

(4*A*b^3*(a + b*x^2)^(1/2))/(315*a^2*x^3) - (10*A*b*(a + b*x^2)^(1/2))/(63*x^7) - (B*a*(a + b*x^2)^(1/2))/(7*x
^7) - (8*B*b*(a + b*x^2)^(1/2))/(35*x^5) - (A*b^2*(a + b*x^2)^(1/2))/(105*a*x^5) - (A*a*(a + b*x^2)^(1/2))/(9*
x^9) - (8*A*b^4*(a + b*x^2)^(1/2))/(315*a^3*x) - (B*b^2*(a + b*x^2)^(1/2))/(35*a*x^3) + (2*B*b^3*(a + b*x^2)^(
1/2))/(35*a^2*x)

________________________________________________________________________________________

sympy [B]  time = 7.15, size = 1408, normalized size = 16.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)*(B*x**2+A)/x**10,x)

[Out]

-35*A*a**8*b**(19/2)*sqrt(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 +
315*a**4*b**12*x**14) - 110*A*a**7*b**(21/2)*x**2*sqrt(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*x*
*10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14) - 114*A*a**6*b**(23/2)*x**4*sqrt(a/(b*x**2) + 1)/(315*a**7*
b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14) - 40*A*a**5*b**(25/2)*x**6*sqr
t(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14) -
15*A*a**5*b**(11/2)*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) + 5*A
*a**4*b**(27/2)*x**8*sqrt(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 +
315*a**4*b**12*x**14) - 33*A*a**4*b**(13/2)*x**2*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8
 + 105*a**3*b**6*x**10) + 30*A*a**3*b**(29/2)*x**10*sqrt(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*
x**10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14) - 17*A*a**3*b**(15/2)*x**4*sqrt(a/(b*x**2) + 1)/(105*a**5
*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) + 40*A*a**2*b**(31/2)*x**12*sqrt(a/(b*x**2) + 1)/(315*a
**7*b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14) - 3*A*a**2*b**(17/2)*x**6*
sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) + 16*A*a*b**(33/2)*x**14*
sqrt(a/(b*x**2) + 1)/(315*a**7*b**9*x**8 + 945*a**6*b**10*x**10 + 945*a**5*b**11*x**12 + 315*a**4*b**12*x**14)
 - 12*A*a*b**(19/2)*x**8*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10)
- 8*A*b**(21/2)*x**10*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) - 1
5*B*a**6*b**(9/2)*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) - 33*B*
a**5*b**(11/2)*x**2*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) - 17*
B*a**4*b**(13/2)*x**4*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) - 3
*B*a**3*b**(15/2)*x**6*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) -
12*B*a**2*b**(17/2)*x**8*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10)
- 8*B*a*b**(19/2)*x**10*sqrt(a/(b*x**2) + 1)/(105*a**5*b**4*x**6 + 210*a**4*b**5*x**8 + 105*a**3*b**6*x**10) -
 B*b**(3/2)*sqrt(a/(b*x**2) + 1)/(5*x**4) - B*b**(5/2)*sqrt(a/(b*x**2) + 1)/(15*a*x**2) + 2*B*b**(7/2)*sqrt(a/
(b*x**2) + 1)/(15*a**2)

________________________________________________________________________________________